Previous Question Paper for Government Polytechnic Lecturers exam (ECE) held on 10-6-2012

1.	For Global com 1) 1	2) 2	e number of sat 3) 3	tellites needed is 4) 5					
2.	A broadcast rad carrier power w 1) 1.2KW	lio transmitter r vill be 2) 1.45KW	adiates 20kW 3) 16.94KW	when the modulation p 4) 20KW	ercentage is 60. The				
3.	In a band-stop f 1) R	Filter having RL 2) series com	C series resonation of L and	ant circuit, the o/p is ta nd C 3) L	ken across the 4) C				
4.	When compared to a first order LPF, a second order LPF has,1) lower voltage gain2) higher voltage gain3) faster drop in filter response4) higher cut-off frequency								
5.	An initially relaxed RC series network with $R = 2M\Omega$ and $C = 1\mu$ F is switched on to a 10V step input. The voltage across capacitor after 2 seconds will be 1) zero 2) 3.68V 3) 6.32V 4) 10V								
6.	A satellite earth station has 1) only transmitting equipment 2) only receiving equipment 3) both transmitting as well as receiving equipment 4) neither transmitting nor receiving equipment								
7.	Strapping is use 1) ensure bunch 3) improve the	ed in cavity mag ning phase focusing	gnetron to effect	 2) prevent cathode – 4) prevent mode jump 	back heating ping				
8.	The distance of 1) 360 km	a geostationary 2) 3600 km	y satellite from 3) 36,	the surface of the Eart 000km 4) 3,60	h is nearly 0,000km				
9.	 A unit step voltage is applied at t - 0 to a series RL circuit with zero initial conditions. 1) It is possible for the current to be oscillatory 2) The voltage across the resistor at t = 0 is zero 3) The energy stored in the inductor in the steady state is zero 4) The resistor current eventually falls to zero 								
10.	A cascaded stag gain in dB is	ge of 3 amplifie	ers has individu	al voltage gains of 25,	10 and 4. Its overall				
	1) 30	2) 39	3) 60	4) 1000					
11.	The temperature respectively.	e coefficient of	a metal is	, and that of a semi	conductor is				
	1) +ve, -ve	2) +ve	e, +ve	3) -ve, +ve	4) –ve, -ve				

12.	 In end fire array, the principal direction of t radiation 1) is perpendicular to the array axis 2) is perpendicular to the array axis and also to the plane containing the array elements 3) coincides with the direction of the array axis 4) is 45° to the direction of array axis 								
13.	A series R-L-C circuit has $R = 2$ 1) 5 2) 50 3	Ω , L = 1n and 3) 25	$d C = 0.4 \mu F$. Its Q fac 4) 100	tor is					
14.	For f1 layer the maximum densit layer will be 1) 1.36 MHz 2) 13.6 I	ty is 2.3* elec MHz	etron per c.c. the critic 3) 136 MHz	al frequen 4) 1360	cy for t MHz				
15.	For a Hartley oscillator, frequence 1) $\frac{1}{2\pi LC}$ 2) $\frac{2\pi}{\sqrt{LC}}$ 3	cy of oscillati 3) $\frac{1}{2\pi\sqrt{LC}}$	ons is given by 4) 2πLC						
16.	In a low level amplitude modula stage can be only 1) Linear amplifiers 3) Harmonic generators	tion system tl 2) Class C am 4) Other Non-	he amplifiers followin plifier -linear amplifiers	g the mod	ulated				
17.	In a linear circuit, the superposit 1) voltage and power 3) current and power	ion principle 2) voltage and 4) voltage, cu	can be applied to calc current rrent and power	ulate					
18.	Spectral density of white noise 1) varies with frequency	2) is constant	3) varies with ba	andwidth	4) none				
19.	The self impedance of a thin half 1) 73Ω 2) $(73 - j42)\Omega$	f wave dipole 3) (73	e antenna is + j42) Ω 4) 36	.5Ω					
20.	Which of the following circuits of 1) Synchronous demodulator 3) Phase discriminator	cannot be use 2) Pro 4) Bal	d to demodulate SSB ⁴ duct detector anced modulator	?					
21.	The signal to noise ratio of DSB 1) same 2) double	-SC is as 3) half	s that of SSB-SC f 4) 3/2 times						
22.	If f(t) = -f(-t), and f(t) satisfies D series containing 1) sine terms and constants 3) cosine terms and constants	Dirichlet cond 2) onl 4) onl	itions, then f(t) can be y cosine terms y sine terms	expanded	in Fourier				
23.	Medium wave broadcast is used 1) Regional service 2) Natio	for nal service	3) International serv	ice 4	l) All				
24.	A NOR gate has 3 inputs A, B, C 1) $A = B = C = 0$ 3) $A = B = 1$ and $C = 0$	C. For which 2) $A = B = C$ d) $A = C = 1$	combination of inputs = 1 and B = 0	is the outp	out high?				

25.	The power gain 1) 1.76 dB	of a half wave 2) 1.5 dB	dipole w 3) 2.15	vith res dB	pect to an 4) 1.64 d	isotropic B	radiator	is	
26.	Two impedance impedance is	es 10 – j10 and	10 + j10	are con	nnected in	parallel.	Their co	ombined	
	1) 5 + j5	2) 5 – j5	3) 10 +	j0	4) 20 – j1	0			
27.	Norton's equiva 1) is same as Th 3) is dual of Th	ilent circuit ievenin's circu evenin's circui	it t	2) has 1 4) is re	no relation ciprocal o	n with Th f Theven	evenin's in's circ	s circuit uit	
28.	A constant k ba frequencies of s 1) 3000 Hz	nd-pass filter h eries and shun 2) 2500 Hz	as a pass t arms is	3) 2000	n 1000 to 4) Hz	4000Hz. 7 4) 1	Гhe reso 500 Hz	onant	
29.	At cut-off, a pro	ototype HPF ha 2) π	as a phase $3)\frac{\pi}{2}$	e consta	ant of $(4) - \frac{\pi}{2}$				
30.	Faraday's law c 1) $\nabla . \overline{E} = -\frac{\partial \overline{B}}{\partial t}$	an be expresse 2) ∇ ×	d in different $\overline{E} = -\frac{\delta}{\delta}$	erential 9 <u>B</u> 9t	form as 3) $\nabla \times \overline{H}$	$= \bar{J} + \frac{\partial \bar{D}}{\partial t}$	4) <i>Ē</i>	$\bar{B} = \nabla \times \bar{A}$	Ī
31.	Maxwell's Dive 1) $\nabla \times B = 0$	ergence equation 2) ∇. E	on for the $3 = 0$	magne	etic field is 3) $\nabla \times B$	s given by $= \rho$	/ 4) ∇	$B = \rho$	
32.	The effective ap 1) 1.0	Derture of an iso 2) 0	otropic ra 3) 0.132	adiator λ^2	is 4) 0.08λ ²				
33.	The M.K.S. uni 1) Ampere	t of magnetic f 2) Weber	ield H is 3) Web	er per s	square me	ter 4) A	Ampere	per meter	
34.	Two sinusoidal connected in pa 1) 25A	voltage source rallel and feed 2) about 1.75.	s $V_1 = 50$ an induc A) sin(1(tance X c) zero	$P(0t)$ and $V_{L} = 2\Omega$. T	$f_2 = 50 \sin \theta$ The current of f_2 (1) f_2	(100t + ⁻ 1t throug	π) are gh X_L is	
35.	The reflection c of a transmission 1) $K_r = (Z_L + Z_L)$ 3) $K_r = (Z_L - Z_L)$	poefficient (K _r), on line are conn Z_0 / $(Z_0 - Z_L)$ Z_0 / $(Z_L + Z_0)$, characte lected tog	eristic in gether b 2) $K_r =$ 4) $K_r =$	mpedance by the rela = $(Z_L Z_0)/$ = $(Z_L - Z_0)$	(Z_0) and tion $(Z_0 - Z_L)/(Z_0 Z_L)$	load im))	pedance (ZL)
36.	The normalized section	characteristic	impedan	ces of a	ı prototype	e LPF, wi	th T-sec	ction and a	π-
	 become equa become equa 	$l \text{ at } f = \infty$ $l \text{ at } f = f_c$		 beco will 	ome equal never be o	at f = 0 equal			
37.	Equation $\nabla^2 V =$ 1) Poisson's equ	$= -\frac{\rho}{\varepsilon}$ is callent uation 2) Lap	ed the place equ	ation	3) Contin	uity equa	tion 4) None	
38.	The stability factor for the stability factor $1) 0$ and ∞	ctor of a typical 2) 0 and 1	l amplifie 3) ∞ ar	er using nd (β+1	g self-bias) 4)	, lies betw) 1 and (β	veen +1)		

39.	The maximum MHz critical free	usable frequenc equency is	cy of an ionosp	oheric layer a	t 60° incidence a	and with 8
	1) 16 MHz	2) 16/√3 MHz	z 3) 8 N	ИHz	4) about 6.9	3 MHz
40.	A transmission VSWR is	line having 500	Ω impedance i	s terminated	in a load of (40	+ j30)Ω. The
	1) 1/3	2) 0.8 + j0.6	3) 1	4) 2	2	
41.	A 3µF capacito the capacitor at 1) 3V	r is charged by the end of char 2) 4V	a constant cur ging will be 3) 6V	rent 2 μA for 4) 9V	6 seconds. The	voltage across
42.	Degaussing coi 1) increase scre 3) ensure that en 4) reduce the ef	l is used in a co en brightness ach beam bits o fect of the Eart	lour TV tube t 2) rec only its own do h's magnetic f	to luce X-ray en ots ield	nission	
43.	In India, the TV 1) 6 MHz	⁷ channel width 2) 4 MHz	is 3) 5 MHz	4) 7 MHz		
44.	In a TV receive 1) AC voltage i 3) Signal bright	r the contrast is n video signal ness	s controlled 2) DO 3) No	C voltage in v	ideo signal we	
45.	In FM, the carri 1) Modulating s 3) Either of the	er deviation is signal above	determined by 2) Derivative 4) None of th	of the modu a above	lating signal	
46.	For a FM wave modulating sign 1) 1.99 MHz	, the modulating nal amplitude is 2) 1M	g frequency of doubled, band Hz	10kHz and t dwidth will b 3) 2 MHz	bandwidth is 2 M e 4) 3.	1Hz. If 98 MHz
47.	The inverse fou	rier transform o	of the function	$F(\omega) = \frac{2}{i\omega}$ i	s	
	1) <i>t</i>	2) cos ωt	3) sgn(t)	4) ı	$\iota(t)$	
48.	Fourier transfor 1) $\pi\delta(\omega)$	m of the unit st 2) $1/j\omega$	tep function is 3) $(1/j\omega)$ +	πδ(ω)	4) (1/jw) +	- 2πδ(ω)
49.	If $f(t)$ and $F(\omega)$ 1) $2\pi f(-\omega)$	form a Fourier	transform pair 2) $2\pi f(\omega)$	r, then the Fo $3) \tau$	urier transform σ $\tau f(-\omega)$	of F(t) is 4) $\pi f(\omega)$
50.	Which of the fo 1) Capital letter 3) Digits 0 to 9	llowing alphan is A to Z	umeric charac 2) Lower cas 4) Special ch	ters is not alle e letters a to aracters +, -,	owed in Basic? z *, /, etc.	
51.	If the unit step i	response of a ne	etwork is (1 –	$e^{-\alpha t}$) then it	ts unit impulse r	esponse will
	1) $\alpha e^{-\alpha t}$	2) $-\alpha e^{-\alpha t}$	3) $\frac{1}{\alpha}e$	$-\alpha t$ 4) ($(1-\alpha)e^{-\alpha t}$	

52.	One mega byte is 1) 2^{10} bytes 2	equivalent to 2^{20} bytes	3) 2^{30} bytes	4) 2 ¹⁶	bytes
53.	The output Boole 1) $S = \sum (3, 5, 6, 3)$ $S = \sum (1, 2, 4, 3)$	an equations for a 1 7), $C = \sum (1, 2, 4, 7)$ 7), $C = \sum (1, 2, 3, 7)$	Full Adder's Sum 7) 2) $S = \frac{1}{2}$ 7) 4) $S = \frac{1}{2}$	(S) and Carry $\Sigma(1, 2, 4, 7), \Sigma(3, 5, 6), C =$	C(C) are given by $C = \sum (3, 5, 6, 7)$ $= \sum (1, 2, 4)$
54.	The simplest diffe 1) one AND gate	erence in the realiza 2) one NOT	ation of a Half Adg gate 3) one (der and a Half DR gate 4)	f-Subtractor is one EX-OR gate
55.	Which one of the 1) E plane tee	following is also ca 2) H plane to	alled 'rat race'? ee 3) Magi	ic tee	4) Hybrid ring
56.	Boolean expression 1) $AB' + A'B$ 3) $(A' + B) + (A')$	on for the output of $+ B'$)	X-NOR logic gat 2) $(AB)' + AB$ 4) $(A' + B') +$	e with inputs $(A + B)$	A and B is
57.	The input and out 1) equal	put signals for CE 2) impulse 3) ou	amplifier are alwa	ys 4) complemen	ntary to each other
58.	For a transistor if 1) 0.44 mA	$\alpha = 0.98$ and emit 2) 0.88 mA 3) 1.	ter current I _E is 2 96 mA 4) 3.32	mA, then the mA	collector current is
59.	The gain of an an 1) A/1+A β	pplifier with feedba 2) $\beta/1+A\beta$ 3) $\beta/2$	ck is given by the $(1 - A\beta - 4) A/1$	relation Aβ	
60.	Parallel adder is 1) sequential circ 3) either sequenti	uit al or combinational	circuits	2) combinatio 4) None of the	nal circuit e above
61.	If $x(t)$ and its first is $X(s)$ then, $\lim_{t\to 0} 2s$	derivative are Lap $c(t)$ is	lace transformable	e and the Lapl	ace transform x(t)
	1) $\lim_{s \to 0} \left[\frac{X(s)}{s} \right]$	$2)\lim_{s\to 0}[sX(s)]$)] 3) $\lim_{s \to \infty} \left[\frac{X(s)}{s} \right]$	$4) \lim_{s\to\infty} [sX(s)]$]
62.	In open circuit in 1) V_2 and I_2	pedance parameter P_1 and V_2	rs, independent var 3) V ₁ and I ₁	riables are 4) I ₁ a	nd I ₂
63.	The channel capa 1) $B \log_2(1 + S/$	city C of a band lin N) 2) B log(S/I	nit Gaussian chann N) 3) $\frac{1}{B}\log_2(S)$	nel equals $/N$ 4) $\frac{1}{B}$ lo	$g_2(1+S/N)$
64.	An m-derived Lo attenuation at	w Pass filter has f_c =	=1000Hz and m =	0.6. This filte	The will have infinite $f = 1250 \text{ Hz}$
65	1)1 = 1000.07 Hz		(12 3) 1 = 1	302.3ПZ	4) I = 1230 HZ
65.	Electromagnetic (1) TE_{10} mode	ransmission in rect 2) TEM mod	angular wave guid de $3) TE_{20}$	ne uses mode	4) TE ₁₁ mode
66.	A power level of 1) 10W	+10 dBm correspondence (2) 1W 3) 10	nds to 00mW 4) 10m	W	

The input to a negative clamper has peak value of $\pm V_p$. Then, in the output, the positive 67. and negative peaks are nearly 1) 0 and -2V_p respectively 2) V_p and $-V_p$ respectively 4) $-V_p$ and $+V_p$ respectively 3) $2V_p$ and 0 respectively 68. Modified Ampere's law is represented as 2) $\nabla \times \overline{H} = \sigma \overline{E} + \frac{\partial \overline{E}}{\partial t}$ 4) $\nabla \overline{H} = \overline{J} + \frac{\partial \overline{D}}{\partial t}$ 1) $\nabla \times \overline{H} = \sigma \overline{E} + j \omega \varepsilon \overline{E}$ 3) u $\overline{H} = \nabla \times \overline{A}$ 69. If R_H is the Hall effect coefficient, then the conductivity σ and mobility μ are related (for a semiconductor) as 1) $\frac{\mu\sigma}{R_H} = constant$ 2) $\frac{\mu R_H}{\sigma} = constant$ 4) $\frac{\sigma R_H}{\mu} = constant$ 3) $\mu \sigma R_H = constant$ The value of an α in a transistor 70. 1) is always equal to 1 2) is less than 1 but more than 0.93) is about 0.44) is about 0.171. A JFET 2) has low input resistance 1) is a current controlled device 3) has high gate current 4) is a voltage controlled device 72. Compared to bipolar junction transistor, a JFET has 2) high input impedance and high voltage gain 1) lower input impedance 3) higher voltage gain 4) high input impedance and low voltage gain In the transfer characteristic of an n-channel MOSFET, the region of $V_{GS} > 0$ 73. corresponds to ----- region. 1) constant current 2) enhancement 3) depletion 4) saturation The main advantage of using crystal oscillator is 74. 1) constant frequency of oscillation 2) suitable for low voltages 3) high efficiency 4) high output voltage 75. Kirchhoff's laws are applicable to 2) ac sinusoidal wave only 1) dc only 3) dc and ac sinusoidal waves 4) all wave shapes In case of surface wave, the frequency range propagation is 76. 1) upto 2MHz 2) 3 – 30 MHz 3) 30 – 300 MHz 4) upto 20 KHz 77. The lower cut-off frequency of N cascade stages is given by 1) $f_1 (2^{1/n} - 1)^{1/2}$ 2) $\frac{f_1}{\sqrt{2^{1/n} - 1}}$ 3) nf_1 4) $\frac{nf_1}{\sqrt{2^{1/n}-1}}$ If the electric field of a wave is given by $\overline{E} = C_1 e^{-j\beta Z} \hat{Y}$, it implies propagation along 78. $\overline{3}$) +Y direction 1) +Z direction 2) –Z direction 4) –Y direction

79.	An RLC series circuit is excited by 200V, 100Hz supply. The current is 20A. If $R = 100$, $V_{r} = 500$, then V_{r} is								
	$1002, \Lambda - 3002,$ 1) 10Ω	$\begin{array}{c} \text{c} \text{ is} \\ \text{2} \text{) } 14.14\Omega \end{array}$	3) 7.0	7Ω	4) 50Ω				
80.	is not a	reserved word	of standard Pas	scal					
	1) Record	2) Packed	3) Rep	beat	4) Subrou	tine			
81.	Characteristic in	mpedance Z_0 fo	r a lossless line	e is	_				
	1) $\frac{1}{\sqrt{LC}}$	2) $\sqrt{\frac{c}{L}}$	3) $\sqrt{L0}$	C	4) $\sqrt{\frac{L}{c}}$				
82.	Long distance s 1) ground wave	hort wave radio 2) dire	broadcasting ct wave	uses 3) ionosphere	wave 4)	space wave			
83.	If a square wave is applied as an input to a differentiator its output is1) positive and negative spikes3) triangular wave4) sinusoidal wave								
84.	The capacity of 1) number of di 3) maximum ra	the channel is gits used in cod te of informatio	ing n transmission	2) volume 4) bandwid	of informat th required	tion it can take l for information			
85.	Which of the fo 1) Half wave di 3) Isotropic	llowing is taker pole	n as a reference 2) Elementary 4) Infinitesim	e antenna for di doublet al dipole	rective gair	1?			
86.	Which of the fo 1) CE	llowing configu 2) CB	rations can be 3) CC	used as a cons 4) None of the	tant current e above	source?			
87.	Inclusion of a re 1) has no effect 3) stability will	esistor in an em on stability become less tha	itter circuit 2) wor an 1 4) imp	rsens stability proves stability					
88.	A reflex Klystro 1) one cavity re 3) three cavity r	on oscillator use sonator resonator	es 2) two cavity 4) None of the	resonator e above					
89.	In Pascal, X^{Y} is 1) $X * * Y$	evaluated as 2) X ∧Y	3) X pred (Y)	4) Not	ne of the ab	ove			
90.	The Laplace tra 1) $\frac{1}{(s+a)^2}$	nsform of unit in 2) $\frac{e^{-as}}{(s+a)^2}$	$amp function = 3) \frac{e^{-as}}{(s)^2}$	starting at t = a 4) $\frac{a}{(s)^2}$	is				
91.	$(23.625)_{10} = ($ 1) 28.5	(?) ₈ 2) 27.5	3) 26.5	4) 26.75					
92.	Which of the for $1) B+A/C - D$	llowing is not a 2) (A+	proper Fortn e C)/(B+D)	expression? 3) B + *A/C	4)	A**(B+2)			

93.	Gain bandwidth product of an amplifier, after inclusion of negative feedback,						
	3) remains constan	t	4) can change	significantly			
0.4	***	., ,	-				
94.	Wave guide may b 1) high pass filter	e considered 2) low	as pass filter	3) band pass filter	4) band stop filter		
95.	Cassegrain feed is 1) increase the beat 3) allow the feed to 4) reduce the size of	used with a p m width of th b be placed a of the main re	parabolic reflect he system t a convenient eflector	ctor to 2) increase the gain o point	f the system		
96.	For a fixed bias cir	cuit the stabi	lity factor is				
	1) $\frac{1}{\beta+1}$ 2)	$\beta - 1$	3) $\frac{1}{\beta - 1}$	4) $1 + \beta$			
97.	Most commonly us	sed bias in B.	JT amplifier ci	rcuit is			
	1) fixed bias		2) emitter bias				
	3) collector to base	e bias	4) collector fe	edback blas			
98.	Which of the follow 1) $e = E_m \sin(\beta x - \beta)$ 3) $e = E_m \sin(wt - \beta)$	wing is not a – wt) – βx)	travelling wav 2) $e = E_m \cos(\theta)$ 4) $e = E_m \sin(\theta)$	$(\beta x - wt)$ (βx)			
99.	The major advanta 1) higher bandwidt	ge of a TWT h 2) high	over a Klystro her gain	on lies in its 3) higher frequency	4) higher output		
100.	An energy signal h 1) -25 2)	as $F(\omega) = 5$.	Its energy spee 3) 25	etral density is 4) 1			
101.	The depletion layer 1) electrons 2)	r in a reverse holes	biased p-n jur 3) both electro	action is due to the pre ons and holes 4) imm	sent of nobile ions		
102.	What is the value of 1) 1 2)	of the FORTI	RAN integer va 3) 3	ariable M = $2 + 6 ** 2$ 4) 4	/3**3?		
103.	The h_{12} parameter (a/n size) and shut	of a T-netwo	ork, with series	arm resistances of 2Ω	$(i/p \text{ size})$ and 3Ω		
	(0/p size), and side 1) 4 2)	2/3	3) -2/3	4) 6			
104.	An amplifier havin by a mixer circuit l equal to	g noise figur naving noise	re of 3 dB and figure of 10 dI	available power gain c B. The overall noise fig	of 20 dB is followed gure is numerically		
	1) 2.09 2)	3.45	3) 2.90	4) 4.5			
105.	While calculating I1) only current sou2) only voltage sou3) all voltage and c4) all independent is	R _{th} in Thever rces are mad urces are mad current source sources are n	nin's theorem le dead le dead es are made de nade dead	ad			

106.	In Boolean Alge 1) $X + 1 = 1$	ebra, Idempote 2) XY	$\mathbf{f} = \mathbf{Y}\mathbf{X}$	y refers to th 3) XX	he followi = X	ng expressi 4) X -	on : ⊦XY = X
107.	The resonant free Q factor will be	equency of an I	RF amplifie	er is 1 MHz a	and its ba	ndwidth is 1	0 kHz. The
	1) 10	2) 100	3) 5	4) √10			
108.	The loop gain in 1) 45°	n phase shift os 2) 90°	scillator is 3) 180°	4) 360°)		
109.	An AM wave is The modulation	given by e _{AM} = index of the e	= 10 (1+ 0.4 nvelope is	$4\cos 10^3 t + 0$	0.3 cos 10	4 t) cos 10 ⁶ t.	
	1) 0.4	2) 0.5		3) 0.3		4) 0.9	
110.	Limiter is <i>not</i> es 1) Foster-Seeley	ssential in the f 7 2) Balai	following danced slope	etector: 3) Ratio	o detector	4) None	
111.	A geostationary 1) one hour	satellite comp 2) five l	letes one or hours	bit in 3) 24 hour	rs 4)	28 days	
112.	The purpose of (1) high efficience 3)maximum pow	impedance mar cy wer transfer	tching in ar 2) 1 4) 1	amplifier is educed disto None of the	s to achiev ortion above	7e	
113.	When r is the ra proportional to 1) r	dius of a circul 2) r ^{3/2}	lar orbit of 3) r ²	a s <mark>ate</mark> llite, th 4	nen orbital	l period of the	he satellite is
114.	Which of these 1) Pin diode	has semicondu 2) Photo diode	ctor – meta 3) Tunn	l junction? el diode	4) Schottk	xy diode	
115.	The complemen 1) $\overline{A}(\overline{B} + \overline{C})$	t of A + BC + 2) $\overline{A} \overline{B} \overline{C}$	AC will be 3)	ABC	4) A (B	+ <u>C</u>)	
116.	Maximum effect 1) 0.013 λ^2	tive aperture of 2) 0.13 λ^2	of a $\lambda/2$ dip	pole is (3) 1.3 λ^2	4) 1	$3 \lambda^2$	
117.	Uniform excitat 1)maximum gai 2) minimum bea 3) minimum bea	ion of a Linear n, minimum si am width, max am width, mini	Array resu de lobe imum side mum side l	lts in lobe obe 4) n	naximum	gain, no sid	e lobe
118.	The value of the is	resistor creati	ng thermal	noise is dou	bled. The	noise powe	r generated

1) doubled 2) quadrupled 3) unchanged 4) halved

119. Indicate which one of the following types of noise does not occur in transistors. 1) Shot noise 2) Partition noise 3) Resistance noise 4) Flicker noise 120. Noise figure of a receiver is given by 1) the ratio of input to output signal power 2) the ratio of input to output noise powers 3) the ratio of input to output, signal to noise ratio 4) the ratio of output to input, signal to noise ratio 121. In the integer expression -A * B DIV C + D, which operation is done first in Pascal? 1) -2)* 3) DIV (4) +122. In an ideal transmission line with matched load, the VSWR and reflection coefficient are respectively 1) 1 and 1 2) 0 and 1 3) infinity and 04) 1 and 0 123. The junction capacitance of a varactor diode is 5 pF with a reverse bias of 4 V. If this bias is increased to 16 V, the capacitance would become 1) 20 pF 2) 10 pF 3) 2.5pF 4) 1.25 pF 124. The approximate value of input impedance of a common emitter amplifier with emitter resistance R_e is given by 2) $h_{ie} + (1 + h_{fe}) R_e$ $3) h_{ie}$ 4) $(1 + h_{fe}) R_e$ 1) $h_{ic} + A_i R_e$ 125. If a resistor is connected from the o/p to i/p of a CE amplifier stage, it results in a _____ feedback. 1) voltage – shunt 2) voltage – series 3) current – shunt 4) current – series 126. Barkhausen criterion for oscillation stability is 1) $A\beta = 0$ 2) $A\beta = 1$ $(3) - A\beta = 1$ 4) None of the above 127. In a common emitter amplifier, the unbypassed emitter resistance provides 1) voltage shunt feedback 2) current series feedback 3) negative voltage feedback 4) positive current feedback 128. Which of the following is a valid real variable in Fortran 77? 2) GURGAON 1) IT 3) 6 JUNE 7) SUNDAY 129. In a multistage RC coupled amplifier, the coupling capacitor 1) limits the low frequency response 2) limits the high frequency response 3) does not affect frequency response 4) blocks the DC component without affecting the frequency response

- 130. A BJT is said to be operating in the saturation region if
 - 1) both the junctions are reverse biased
 - 2) base-emitter junction is reverse biased and base-collector junction is forward biased
 - 3) base-emitter junction is forward biased and base-collector junction is reverse biased
 - 4) both the junctions are forward biased
- 131. Stokes theorem is expressed as

1) $\oint_{\mathbf{I}} \overline{\mathbf{E}} \cdot \mathbf{d}\overline{l} = \int_{\text{vol}} (\nabla, \overline{\mathbf{D}}) \mathrm{d}\mathbf{v}$	2) $\oint_{I} \overline{E} \cdot d\overline{l} = \int_{S} (\nabla \times \overline{H}) \cdot d\overline{S}$
3) $\oint_{I} \overline{E} \times d\overline{l} = \int_{Sl} (\nabla, \overline{E}) d\overline{S}$	4) $\oint_{I} \overline{E} \cdot d\overline{l} = \cdot d\overline{S}$

132. An ideal diode

1) should have zero resistance in the forward bias as well as reverse bias

2) should have zero resistance in forward bias and an infinitely large resistance in reverse bias

3) should have an infinitely large resistance in forward bias and zero resistance in reverse bias

- 4) should have infinitely large resistance in forward bias as well as reverse bias
- 133. Which configuration is suitable for impedance matching?1) CB2) CE3) CB and CE4) CC
- 134. When analyzing Two-port Networks in cascade, it is more convenient to use
 1) Z-Parameters
 2) h Parameters
 3) T-Parameters
 4) Y-Parameters
- 135. The envelope detector is a
 1) Synchronous detector
 3) Product demodulator
 4) Coherent detector
- 136. The instantaneous value of the Poynting vector is1) EH2) $\sqrt{E \times H}$ 3) E × H4) E . H
- 137. For a signal amplitude modulated to a depth of 100% by a sinusoidal signal, the total transmitted power is ______ the carrier power.
 1) same as 2) twice as 3) 3/2 times 4) 2/3 times
- 138. Which of the following is the fastest switching device?1) J-FET2) BJT3) MOSFET4) TRIODE

139. A clamper

- 1) adds a DC component to the input signal
- 2) removes signal voltages above or below a specified value

3) both (1) and (2)

4) is a non-linear comparator

140. The velocity of electromagnetic waves in free space is given by

1)
$$\sqrt{\left(\frac{\mu_o}{\varepsilon_o}\right)}$$
 2) $\sqrt{\left(\mu_o \ \varepsilon_o\right)}$ 3) $\frac{1}{\sqrt{\left(\frac{\mu_o}{\varepsilon_o}\right)}}$ 4) $\sqrt{\left(\frac{\varepsilon_o}{\mu_o}\right)}$

- 141. The intrinsic impedance of free space is 1) 60π ohms 2) 4π ohms 3) 120 π ohms 4) infinity
- 142. De-emphasis circuit is used
 - 1) to attenuate higher frequencies at receiver
 - 2) to attenuate lower frequencies at receiver
 - 3) to attenuate lower frequencies at transmitter
 - 4) to amplify higher frequencies at receiver
- 143. The three J-FET parameters are related as

The three J-FET parameters are related as
1)
$$\mu = \frac{r_d}{g_m}$$
 2) $\mu = r_d + g_m$ 3) $\mu = r_d g_m$ 4) $\mu = \frac{g_m}{r_d}$

- 144. If a square wave is applied as an input to an integrator, its output is 1) Positive spikes 2) Negative spikes 3) Sine wave 4) Triangular wave
- 145. In MOSFETs N-channel is more preferred than P-channel because 2) it has better drive capability 1) it has better noise immunity 3) it is faster 4) it is cheaper
- 146. A super heterodyne radio receiver with an intermediate frequency of 455 KHz is tuned to a station operating at 1200 KHz. The associated image frequency is 1) 555 KHz 2) 1110 KHz 3) 2110 KHz 4) 4220 KHz
- 147. Which of these are allowed in Basic? 1) Arithmetic operation +, -, *, / 3) Relational operations =, <, >
- 2) Logical operation AND, OR, NOT
- 4) All the above
- 148. ____Radar cannot be used for range measurement. 1) Pulsed 2) CW 3) MTI 4) FM-CW
- 149. Type A scope in RADAR systems displays 1) Target azimuth angle and range 2) Target range alone

 - 4) None of the above 3) Target azimuth angle alone
- 150. At room temperature, the dynamic resistance of a Germanium diode can be calculated using the formula

1) $\frac{0.026 \text{ mV}}{\text{I}}$ 2) $\frac{26 \text{ mV}}{\text{I}}$ 4) 26 I 5) 0.026 I

TZENYZ	
кну	٠
	٠

1-2	2-3	3-1	4-4	5-2	6-3	7-3	8-3	9-3	10-2
11-1	12-1	13-3	14-2	15-3	16-1	17-4	18-1	19-1	20-4
21-2	22-1	23-2	24-3	25-1	26-3	27-4	28-2	29-3	30-4
31-2	32-3	33-4	34-2	35-3	36-3	37-2	38-4	39-2	40-3
41-2	42-1	43-1	44-3	45-2	46-3	47-3	48-1	49-2	50-3
51-1	52-2	53-2	54-2	55-3	56-4	57-3	58-1	59-1	60-2
61-4	62-3	63-1	64-1	65-1	66-2	67-1	68-2	69-1	70-2
71-4	72-2	73-4	74-1	75-3	76-2	77-2	78-3	79-4	80-3
81-1	82-3	83-1	84-3	85-3	86-2	87-4	88-1	89-2	90-1
91-2	92-4	93-2	94-3	95-1	96-4	97-3	98-4	99-2	100-3
101-4	102-4	103-3	104-3	105-4	106-4	107-2	108-3	109-2	110-1
111-4	112-3	113-2	114-4	115–1	116-2	117–4	118–1	119-2	120-4
121–3	122-3	123-4	124-2	125-3	126-2	127-2	128-3	129-4	130-2
131-1	132-2	133-4	134-2	135-1	136 - 3	137-3	138-3	139-1	140 - 3
141-3	142-1	143-3	144-4	145-3	146-1	147- *	148- *	149-3	150-2